Breakdown of Universality in Random Matrix Models

نویسنده

  • S. Iso
چکیده

We calculate smoothed correlators for a large random matrix model with a potential containing products of two traces trW1(M) ·trW2(M) in addition to a single trace trV (M). Connected correlation function of density eigenvalues receives corrections besides the universal part derived by Brézin and Zee and it is no longer universal in a strong sense. On leave of absence from National Laboratory for High Energy Physics (KEK) [email protected] [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breakdown of universality in multi - cut matrix models

We solve the puzzle raised by Brézin and Deo for random N × N matrices with a disconnected eigenvalues support: their calculation by orthogonal polynomials disagrees with previous mean field calculations. We show that this difference does not stem from a Z 2 symmetry breaking, but from the discretizeness of the number of eigenvalues. This leads to additional terms (quasiperiodic in N) which mus...

متن کامل

6 Ju n 20 08 LECTURES ON RANDOM MATRIX MODELS . THE RIEMANN - HILBERT APPROACH PAVEL

This is a review of the Riemann-Hilbert approach to the large N asymptotics in random matrix models and its applications. We discuss the following topics: random matrix models and orthogonal polynomials, the Riemann-Hilbert approach to the large N asymptotics of orthogonal polynomials and its applications to the problem of universality in random matrix models, the double scaling limits, the lar...

متن کامل

ar X iv : 0 80 1 . 18 58 v 1 [ m at h - ph ] 1 1 Ja n 20 08 LECTURES ON RANDOM MATRIX MODELS . THE RIEMANN - HILBERT APPROACH

This is a review of the Riemann-Hilbert approach to the large N asymptotics in random matrix models and its applications. We discuss the following topics: random matrix models and orthogonal polynomials, the Riemann-Hilbert approach to the large N asymptotics of orthogonal polynomials and its applications to the problem of universality in random matrix models, the double scaling limits, the lar...

متن کامل

Universality for a class of random band matrices

We prove the universality for the eigenvalue gap statistics in the bulk of the spectrum for band matrices, in the regime where the band width is comparable with the dimension of the matrix, W ∼ N . All previous results concerning universality of non-Gaussian random matrices are for meanfield models. By relying on a new mean-field reduction technique, we deduce universality from quantum unique e...

متن کامل

Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques

The studies of fluctuations of the one-dimensional Kardar-Parisi-Zhang universality class using the techniques from random matrix theory are reviewed from the point of view of the asymmetric simple exclusion process. We explain the basics of random matrix techniques, the connections to the polynuclear growth models and a method using the Green’s function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997